

GCSE MARKING SCHEME

MATHEMATICS - TWO TIER LEGACY
NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - TWO TIER LEGACY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
Mathematics Paper 1 - Foundation Tier	1
Mathematics Paper 2 - Foundation Tier	4
Mathematics Paper 1 - Higher Tier	7
Mathematics Paper 2 - Higher Tier	9

PAPER 1 – FOUNDATION TIER

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MAR	K SCHEME
Foundation Tier	Marks	Comments (14/11/2011)	(Page 1)
1. (a) (i) 23062	B1	C.A.O.	
(ii) eighty five thousand (one) hundred (and) five	B1	C.A.O.	
(b) (i) 23, 47	B1	C.A.O.	
(ii) 88, 46	B1	C.A.O.	
(iii) 49	B1	Accept 7×7 OR 7^2	
		P. C.	
(c) (i) 5630	B1	C.A.O.	
(ii) 5600	B1	C.A.O.	
(d) 1 2 5 15	B2	B1 for any 2 or 3 factors and no incorrect nu	mhara
(d) 1, 3, 5, 15	D2	OR the 4 correct factors and 1 incorrect num	
		or the recorder factors and r meconeet family	001.
(e) (i) 9832	B1	C.A.O.	
(ii) 2398	B1	C.A.O.	
	11		
2. (a) 9 12 11 7 1	11 B2	B1 for any three correct (tallies and)	Frequencies
2. (u) / 12 11 / 1	D2	frequencies.	take
(Total =) 40	B1	F.T. their frequencies. If frequencies get 0	<u>precedence</u>
(b) E	B1	F.T. their table of frequencies	over tallies
		B0 for 12, but E and 12 is B1	If freq. score 0
(a) A E N C Talong and onic	D1	OD indicated on the house themselves	then all correct
(c) A, E, N, S, T along one axis Uniform scale for the frequency axis starting at 0	B1 B1	OR indicated on the bars themselves F.T. their table of frequencies.	tallies score B1
(No numbers interpreted as 1-12 in ones)	D1	Use of any other scale must be clearly	
<u>()</u>		indicated on graph	
Five bars at correct heights	B2	B1 for at least 3 correct bars on F.T.	
		Bars can be of varying width	
	8	B1 for 5 correct bars with frequency	
		polygon	
3. (a)			-
cuboid	B1	C.A.O.	
trapezium	B1	Line to parallelogram gets B0	
pentagon	B1	C.A.O.	
equilateral triangle	B1	C.A.O.	
	B1	Clear intent to be parallel.	
(b) parallel line		r	
	B1		
(c) Lines	B1	F.T. the ends of their lines	
Curve	7 B1	C.A.O.	
4. (a) (i) 40 (ii) 58	B1	C.A.O. C.A.O.	
(11) 50	D1	C.1.O.	
(b) ·75	B1	C.A.O.	
·76	B1	C.A.O.	
$.72 \frac{3}{4} 76\%$	B1	Or equivalent. Correct answer OR F.T. their	· values
4	5	or equivalent. Correct answer OK 1.1. then	values.
5. (a) 11 × 5	M1		
= 55	A1	C.A.O.	
2		Candidates who get 55 then multiply by 2 et	e get M0, A0.
cm ²	U1	Independent of other marks	
(b) 32 (cm)	B1	C.A.O.	
(0) 32 (011)	4	0.11.0.	
	'		

2011 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments (14/11/2011) (Page 2)
6. (a) 000000		
• • • • • • •	B1	C.A.O.
0000000		
(b) 8 10	B1	C.A.O.
16 20	B1	C.A.O.
() () 20		
(c) (i) 90 (ii) 100	B1	C.A.O.
(11) 100	B1 5	C.A.O.
7. All 3 quadrants correct.	В3	B1 for each correct quadrant.
	3	
8. (a) 36	M1	Any correct complete method for the multiplication of 36 by
$\frac{\times 48}{288}$	A1	48 For either 288 or 1440
1440 	Al	For either 288 of 1440
1728		
= 1728 (bottles)	A1	C.A.O. Place value errors get M0, A0, A0
		Trace value errors get wio, Ao, Ao
(b) e.g. $1\% = 3$ AND $8\% = 3 \times 8$	M1	Any valid method
24	A1	M1 for $\frac{8}{100} \times 300 \text{ OR } \frac{2400}{100}$
2.	111	
		SC1 for (un)supported 24% OR (0).24 M1, A0 if they go on to 300±24
		£24 gets M1, A1
	5	-
9. Procedure for marking Q9 (5, 1) 1. Mark any writen coords. up to 8 independent	B1 B1	Reversed coordinates get 0 each time.
(5, 5) I. Mark any writen coords. up to 8 independent ones as B1 if correct, -1 if incorrect down to 0.	B1	Penalise -1 once only for incorrect coordinate notation e.g.
(-3, 1) 2. If the mark is 4 or 3 then STOP at that point.	B1	<u>(x5,y1).</u>
(-3, 5) 3. If the mark is 2 award an extra B1 if all 4 correct points are plotted unambiguously.		
4. If the mark is 1 or 0 then use the SCs in the		SC2 for ONLY all the 4 correct points on the diagram
right hand column of this Mark Scheme.	4	OR SC1 for any 2 correct points (out of a maximum of 4
10.	4	points) on diagram. Ignore x= OR =x OR y= etc .
		Ignore use of capital letter but use of a different letter is
(a) = 0 (a) IGW	D1	penalised –1 once only.
(a) x - 8 (p) <u>I.S.W.</u> (b) 70b (g) <u>I.S.W.</u>	B1 B1	C.A.O. Allow 70 × b OR b × 70 OR b70. 70+b=70b gets B0
(c) 14	B2	B1 for either –6 OR 20
(d) 7c – 3d	B2	B1 for either 7c OR – 3d in an expression of the form ac±bd
(e) 2x + 6 <u>I.S.W</u>	B1	B1 for 7c + - 3d C.A.O.
(1)	7	

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (14/11/2011) (Page 3)
11.		Look at their diagram also
(a) $(180-52)/2$	M1	CAO
= 64 (°) (x=) 116 (°)	A1 B1	C.A.O. F.T. 180 – 'their 64', but F.T. 52 only if it is shown to be
(X-) 110 ()	DI	the right hand 'base' angle in the triangle.
(b) Internal angle = 95	B1	C.A.O.
(y =)360 - 100 - 68 - 95	M1	F.T. 'their 95'
= 97 (°)	A1	Watch for 180+85-100-68 which is correct for the M1
10 () 10	6	B1M0A0 for y = 95 only seen
12. (a) $AB = 11.5 \text{ cm}$	B1	Allow ±2mm. That is, allow 11.3 to 11.7.
AB (in km) = 11.5×5	M1	F.T. their AB
= 57.5 (km)	A1	111. (114.112)
		Use overlay
(b) Bearing	B1	Allow ±2°
Distance	B1	Allow ±2mm
13. (a) False (indicated or implied) AND a counter-	5 B2	B1 for an explanation that is on the correct lines, but has an
example, e.g. halving 16 ends up as 8	D2	error, e.g. <u>'36 divides into 2 to make 18' or '36 \div 2 = 17'</u>
(b) False (indicated or implied) AND a counter-	B2	B1 for an explanation that is on the correct lines, but has an
example, e.g. 33 is not prime		error.
	4	
14.(a) Strategy, e.g. knowing that the probabilities add	M1	Also for their $P(Red)$ + their $P(Blue) = 0.5$
to 1, or that RED with BLUE is 0.5, or Green the same		Either correct response implies M1 also.
as Red RED 0.18	A1	CAO
BLUE 0.32	A1 A1	<u>C.A.O.</u> <u>C.A.O.</u>
(b) 0.12 + 0.18	M1	<u>C.A.O.</u>
0.3(0) or 30%	A1	
H1	5	
15.(a) 90 (kg), 172 (cm)	B2	B1 for either or if reversed
(b) Positive	B1	Do not accept a description
(c) Suitable line, with some points above and below (d) Answers in the range >60 (kg) but <70 (kg)	B1 B1	No requirement to pass through the means OR Suitable answer from their line of best fit
(e) No, with a suitable reason	B1	No maybe implied in their statement
e.g. No as there is no data around 210cm, or	<i>D</i> 1	Allow descriptions of the scale to go up to 200.
"graph doesn't go that high"		
H2	6	
$16.(a) 60/80 \times 100$	M1	411 001 6 75/100
75(%) (b) $300/12 \times 5$ OR $300/12 \times 7$	A1	Allow SC1 for 75/100
(£) 300/12 × 5 OR 300/12 × / (£)125	M1 A1	Allow for 300/'their 5+7' \times 5 OR \times 7 C.A.O.
(£) 175	A1	<u>C.A.O.</u>
(c) $75/100 \times 562.80$ OR $^{3}/_{4} \times 562.80$ OR $281.4(0) +$	M1	
140.7(0)		OR equivalent
(£)422.1(0)	A1	
H5	7	D1 for An = An sate D0
17.(a) $4n + 2$ (b) $3x + 7x = 8 - 4$	B2 B1	B1 for 4n $\frac{4+n = 4n \text{ gets } B0}{\text{error}}$
x = 4/10 (or equivalent) ISW.	B1	Accept $x = -4/-10$
H6	4	1
18.(a) E.g. $2^3 \times 3$ not even powers	E1	Accept 'no number times itself gives 24' only with 4×4
OR 'No WHOLE number multiplied by itself gives		and 5×5 given. Accept $4\times 4=16$ and $5\times 5=25$.
24 OR $2\sqrt{6}$ is not a whole number.		Do not accept '16, 25' only.
(h) Mathad that produces at least 2 servest mines	M1	Do not accept "not even powers" without $2^3 \times 3$ Before 2^{nd} error
(b) Method that produces at least 2 correct prime factors	IVI I	Ignore 1s seen
Sight of correct factors (2, 2, 2, 2, 7)	A1	FT their factors (with at least one index >1 used). Do not
$2^4 \times 7$	B1	ignore 1s.
Н7	4	
	-	

PAPER 2 – FOUNDATION TIER

2011 Autumn Paper 2 (Calculator allowed)		FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (21/11/2011) (Page 1)
1. (a) (£120.38)		
11.04	B1	C.A.O.
25.38	B1	C.A.O.
3.8(0)	B1	C.A.O.
(£) 160.6(0) I.S.W.	B1	F.T. their figures for one error
(b) e.g. $10\% = 16.06$ $5\% = 16.06/2$	M1	F.T. 'their 160.6'
= (£) 8.03	A1	Award M1, A1 for (£)152.57 OR 'their (£)152.57' on F.T.
(4) 3133	6	in the second se
2. km	B1	C.A.O.
kg	B1	C.A.O.
ℓ	B1	Accept cm ³ OR cc OR ml
m	B1	C.A.O.
	4	
3. 430 (g)	B1	C.A.O.
190 (g)	B1	C.A.O.
(430 - 190)/40	M1	
=6 (g)	A1	F.T. 'their 430 – 'their 190'
- (0)	4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4. (a) Wage = $7 \times 15 + 150$	M1	
= (£) 255 ISW	A1	C.A.O.
(b) Number of hours = $(270 - 180) / 15$	M1	Correctly substitution including the division
= 6	A1	C.A.O.
· ·	4	Accept embedded answers such as $270 = 6 \times 15 + 180$
5. (a) Counting squares	M1	1100000 011100 0110 1100 1100 1100 1100
42 – 48	A1	
210 – 240	B1	F.T. 'their 42–48'×5 correctly calculated
(b) d c b a	B4	B1 for each
	7	B1 for cach
6. (a) D	B1	A marked at 1.
$^{\circ}$	B1	B should be almost at 0 (0 to under the p in probabilty)
0	B1	C marked at centre of the line.
U		
(b) No – number of pupils is odd, (so not equal	E1	Along these lines
number of girls and boys.)		No may be implied in their explanation
OR depends on how many tickets the girls and		Reason overides the 'Yes' or 'No" in the comments column
boys bought.		
	4	
7. Units used = $246 \frac{\text{OR } 7792 \times 12 - 7546 \times 12}{12}$	B1	
Cost of units = $(£) 29.52 \text{ OR } 2952(p)$	B2	F.T. 'their units'. <u>B1 for £2952</u>
Total cost = $(£) 51.77$ OR 5177(p)	B1	F.T. for 'their cost of units + £22.25
	4	
8. (a) angle at $A = 54^{\circ}$	B1	± 2°
AC = 12.6	B1	± 2mm
Complete triangle	B1	Only if at least one B1 already awarded
(b) Angle	B1	F.T. if completed triangle joining BC.
		(Allow 46 – 50 in a 'good' triangle)
		Complete 'correct' triangle but reflected gets B2.
	4	
9. (a) Sum = 1176	M1	For attempt to add the numbers (1000 – 1350 will imply M1)
Mean = 1176/8	m1	For dividing a number by 8 (dependent on the M1)
= 147 (cm)	A1	<u>C.A.O.</u>
(b) 118 120 137 <u>141 151</u> 153 175 181	M1	Arranging the numbers in order (ascending or descending)
		(Award the M1 for 7 of the numbers in correct order)
146	A1	C.A.O.
(c) 63 (cm)	B1	C.A.O.
	6	

2011 Autumn Paper 2 (Calculator allowed)		FINAL POST CONFEREN	
Foundation Tier 10. Door 6 to 8 ft OR 1 · 8 to 2 · 5 metres	Marks B1	Comments (21/11/20	, <u> </u>
Door 2.5cm Building = 10cm	DI	<u>Unsupported answer</u>	ers marked as follows:
Multiplying factor = 4	B1	feet 12 sc1 24	32 48
Height = door's estimate \times their SF (2-6)	M1	SC1 SC1 M1,	A1 (inc) SC1
		metres	l l
SC1 for answers which:		7.2	10 15
(a) give only door's height as 2.5cm and building height	A1	F.T. their door's height estimate A	
<u>as 10cm</u>		Correct units for their numerica	
OR (b) a proper attempt at 'dividing' the building's		somewhere in their working for	this A1
height into equal 'door' heights	4		
11. (a) D	<u>B1</u>		
(b) C	<u>B1</u>	A1 41 11	
(c) Ran a little then turned back to the start	E1	Along these lines	
12. (a) 12 14 20 22	3 B2	C.A.O.	
12. (a) 12 14 20 22	DZ	B1 for any 4	
11 13 17 21		B1 for any 4	
(b) 3/16 ISW	B2	F.T. their table in (b) and (c)	NOTES
		B1 for a numerator of 3 in a	Penalise –1 for use of
		fraction less than 1.	words such as "3 out of
		B1 for the 16 in a fraction <1.	16", "3 in 16" OR "3:16"
		Do not penalise incorrect	OR 3 over 16.
		reduction of fractions.	When fraction and wrong
			notation seen, DO NOT
(c) $\frac{3}{16} \times 80$	3.61	E.E. (1 : 2/1/2):0 0 : 1	penalise wrong notation.
16	M1	F.T. 'their 3/16' if a fraction <1.	
		but not ½.	
= 15	A1	If they have incorrectly reduced	
		and use it in part (c), then it is N	<u> 11, A0 in part (c).</u>
		15/80 gets M1, A0	
	6		
13. (a) 2p	B1		
(b) (i) $(x =)$ 75	B1	Accept embedded answers such as	
(ii) 3y = 6	B1	Accept embedded answers such as	
(y =) 6/3 ISW (=2)	B1	F.T. until 2 nd error. Final B0 for	<u>6÷3</u>
(c) 2 (d) $35 = 2 \times 4 + 3M$	B1 B1	F.T. until 2 nd error.	
(d) $35 = 2 \times 4 + 3M$ 3M = 27	B1	F.1. unui Z " error.	
M = 27/3 ISW (=9)	B1	F.T. aM=b (a≠1)	
		Accept embedded answers such	as $35 = 2 \times 4 + 3 \times 9$
	8		
14. Cost of all adult tickets = £488.8(0) – 25 × (£)7.6(0)	M1		
= (£) 298.8(0)	A1	C.A.O.	
Cost per ticket = $298.8(0)/24$	M1		
=(£) 12.45	A1	F.T. 'their 298.80' but NOT (£)48	
		Note: Pupils who interchange the	
	4	marked as if correct then MR-1	<u>•</u>
15. (a) 11/40 ISW	B2	C.A.O.	
10. (a) 11/70 10 W	D2	B1 for 11/m in a fraction < 1, B1	for $n/40$ (if < 1)
		Penalise –1 for incorrect notation	
		40 etc	
(b) $(0\times10) + 1\times19 + 2\times6 + 3\times4 + 4\times1$	M1	Allow one term to be incorrect or	missing.
= 47	A1	Allow M1, A0 for 47/40	-
	4		

2011 Autumn Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments (21/11/2011) (Page 3)
16. (a) $\frac{17}{100} \times (£) 269$	M1	For a correct method of finding 17% and subtracting from 269
= (£) 45.73	B1	C.A.O.
Internet price = $(£)223.27$	A1	F.T. 'their 45.73' if M awarded
1 , , ,		<u>OR</u>
OR $\frac{83}{100} \times (£) 269$		M1 for a correct method of finding 83%
100		B1 for sight of 83
Internet price = $(£)223.27$		A1 C.A.O.
(b) $1/3 \times 2 \times 2 \times 5$	M1	
= 20/3	A1	
7 tins	B1 6	F.T. 'their 20/3' rounded up.
17. (a)(i) Their readings at 14:30 & 13:00 and intention to subtract	M1	116 – 64. Allow for 'their readings' with intention to subtract
= 52 (km)	A1	CAO
(ii) 52/1.5	M1	FT their (i) Watch for 144/4 (= 35) which gets M0, A0
34.666(km / h)	A1	Accept rounded or truncated. However, do not accept an
		answer of 35 without working or from incorrect working
(A) E 1 (C) 1 10	F.4	SC1 for an answer of 40
(b) Explanation, e.g. "first half journey in just over an	E1	Accept, e.g. "more vertical", "line increases means it is
hour", "steeper to start"	5	quicker"
H1 18.(a) 0.72	5 B2	B1 for 0.7(17694)
10.(a) 0.72	102	B1 101 0.7(17074)
(b) Any correct 8% of a value used in workings	B1	Could be (£)128 OR (£)256 OR 'their 117.76'
1600 – 8% of 1600 (= 1600 – 128)	M1	OR M2 for 1600×0.92^2 (M1 for 1600×0.92)
1472 - 8% of $1472 (= 1472 - 117.76)$	m1	FT their 128
(£) 1354.24	A1	CAO. Penalise extra working -1
		Appreciate: Possible B1 and SC1 for (£)1866.24
H3ac	6	Simple depreciate: Possible B1 and M1 (1344)
19. 700× 1.64	M1	
= (\$)1148 (Canadian dollars)	A1	ET 41 - in many 4: 1 - 1 - mm 4 - m - mm 4 50 m m - i 1 - 1 M1
Conclusion, has to buy 1100 (Canadian dollars)	A1	FT their rounding down to nearest 50 provided M1
1100 ÷1.64	M1	FT their amount of Canadian dollars 'if changed to a \$50
= 670.73(17)	A1	amount'. Do NOT F.T. 1148 OR 'their 1148'
£670.73	A1	£ must be given. Accept £670.73p
		For example, 1148 changed to 1150 (incorrect) gets M1,
		A1, A0, but on F.T. 1150/1.64 gets M1, 701.21(9) gets A1
		and finally £701.22 gets A1 giving 5 marks in total.
		Accept an answer of '29.27 in credit' or similar, but an
114		answer of 29.27 would not get the final A mark, but do award the previous M1 A1 as alternative method
H4	6	me previous mit At as anemanive memoa
$20.(a) \frac{1}{2} (8.2 + 12.8) \times 7.6$	M1	
79.8 (cm ²)	A1	Accept 80 from working, but unsupported 80 gets M0, A0.
(b) $\frac{1}{2}\pi \times 22.4^2$	M2	Allow M1 $\pi \times 22.4^2$
$= 787.7(6) \text{ to } \frac{788.2(6496)}{6496}$	A1	A1 1575.5 to 1576.5
, , , , , , , , , , , , , , , , , , ,		SC1 for answer 3151 to <u>3153.05</u>
H6bc	5	

PAPER 1 – HIGHER TIER

Higher Tier November 2011 Paper 1	Mark	Comments (Final Post-conference version 13.11.11)
1.(a) Strategy, e.g. knowing that the probabilities add to 1, or	M1	Also for their $P(Red)$ + their $P(Blue) = 0.5$
that RED with BLUE is 0.5, or Green the same as Red		Either correct response implies M1 also
RED 0.18	A1	
BLUE 0.32	A1	
(b) $0.12 + 0.18$	M1	
0.3(0) or 30% or equivalent	A1	
•	5	
2.(a) 90 (kg), 172 (cm)	B2	B1 for either or if reversed
(b) Positive	B1	Do not accept a description
(c) Suitable line, with some points above and below	B1	No requirement to pass through the means
(d) Answers in the range >60 (kg) but ≤ 70 (kg)	B1	OR Suitable answer from their line of best fit
(e) No, with a suitable reason	B1	No maybe implied in their statement
e.g. No as there is no data around 210cm, or		
"graph doesn't go that high"	6	
3.(a) $a = 70^{\circ}, b = 110^{\circ}, c = 70^{\circ}$	В3	B1 for each. FT $b = 180 - a$ and $c = a$ or $c = 180 - b$
(b) 360/10	B1	OR alternatively: 8 triangles at 180 or 1440 B1
180 - 360/10	M1	(8 × 180)÷ 10 M1
$144^{(0)}$	A1	144 A1
(c)(i) Bearing 326 <u>+</u> 2°	B1	
(ii) $038^{\circ} \pm 2^{\circ}$ from C	M1	
$305^{\circ} \pm 2^{\circ}$ from A	M1	
D indicated or implied by point	A1	Depends on at least 1 M mark
• • • •	10	•
4. (a) Correct reflection in the line $x = -1$	В2	B1 for a reflection in any line indicated or either axis, OR
		B1 for drawing $x = -1$
(b) Correct translation	B1	e e e e e e e e e e e e e e e e e e e
(c) Enlargement ½	M1	Note: Scale factor 2 is NOT MR, M0 A0
Correct position	A1	,
(d) Bisector of angle CAB	B1	<u>+2</u> ⁰
Arc radius 5cm centre A	B1	
Correct region shaded	B1	FT for intention of bisector & arc
	8	
$5.(a) 60/80 \times 100$	M1	
75(%)	A1	Allow SC1 for 75/100
(b) $300/12 \times 5$ OR $300/12 \times 7$	M1	Intention 300/(5+7) then $\times 5$ or $\times 7$
(£)125	A1	CAO
(£) 175	A1	CAO
(c) $75/100 \times 562.80$ OR $3/4 \times 562.80$ OR $281.4(0) + 140.7(0)$	M1	OR equivalent e.g. attempting to find 7 lots of 10% and adding 5%
(£)422.1(0)	A1	
	7	
6.(a) $4n+2$	В2	B1 for $4n$. B0 for $n + 4 = 4n$
(b) $3x + 7x = 8 - 4$	B1	FT until 2 nd error
x = 4/10 (or equivalent)	B1	ISW. Accept $x = -4/-10$
	4	•
7.(a) E.g. $^{23}\times 3$ not even powers',	E1	Accept 'no number times itself gives 24' only with 4×4 and 5×5
() 2		given. Accept $4\times4 = 16$ and $5\times5 = 25$. Do not accept '16, 25'
		Do not accept "not even powers" without $2^3 \times 3$
		Accept ' $2\sqrt{6}$ not a whole number'
(b) Method that produces at least 2 correct prime factors	M1	Before 2 nd error
Sight of correct factors (2, 2, 2, 2, 7)	A1	Ignore 1s seen
$2^4 \times 7$	B1	FT their factors (with at least on index >1 used). Do not ignore 1s.
(c) 3/5 or 0.6	B1	CAO
(d) $7/3 \times 24/7$	M1	Unsimplified answer award M1 only
= 8	A1	
	7	
8.(a) 2045 and 2055		B1 for each. Accept 2044.999(9999) not 2044.9
0.141 204.) and 20.5.)	1 B2	
	B2 B1	B1 for each. Accept 2044.777(7777) not 2044.7
(b) Sight of least width 1035 (mm)	B1	*
		FT their least length, not 2050 AND their least width, not 1040 CAO

Higher Tier November 2011 Paper 1	Mark	Comments (Final Post-conference version 13.11.11)
9. (a) $(x-4)(x+2)$	B2	B1 for $(x + 4)(x + 2)$ with no or incorrect signs
(b) $2x^2 - 9x - 5$	B2	B1 for $2x^2$ -5 or -9x as part of a trinomial. ISW 'solving'
(c) $21 - 2x = 20 - 5x$	B1	FT until second error
3x = -1	B1	
$x = -1/3 \ (= -0.33)$ ISW	B1	Do not accept -0.3 unless -1/3 seen.
		FT: $21 - 2x = 20 - x$ B0, $-x = -1$ B1, $x = 1$ B1
		FT: $21 - 2x = 4 - 5x$ B0, $3x = -17$ B1, $x = -17/3$ B1
		125 - 10x = 4 - x is 2 errors so no FT
(d) $24 x^{10} y^7$	B2	B1 for any two factors number, x & y correct, or correct but with
(d) 24 x y	52	"times" left in expression
(e) a^3	B1	CAO
(c) <i>u</i>	10	
10.(a) 40, 50, 56, 60	B1	FT to (b) only if cumulative in (a).
(b) At least 5 plots correct horizontally	B1	B0 for bars, B1 for vertical lines. Accept plots, e.g 89 to 90 for <90
At least 5 plots correct vertically	B1	B1 for bars or vertical lines
All 7 points plotted correctly and joined	B1	Joined with a curve or a straight line
(c) (i) Median from their cum. freq. diagram	B1	FT their cumulative frequency or other cumulative diagram in (c)
Difference of heart rate reading for 45 & 15	M1	Allow consistent misread of the scale.
Interquartile range	A1	Correct for their cumulative freq. diagram
<u> </u>	7	
11.(a) $(3x+2)(2x-5)$	B2	B1 for $(3x2)(2x)$
x = -2/3 and $x = 5/2$	B1	FT their pair of brackets
(b) $(2y+9)(2y-9)$	B2 5	B1 for (2y9)(2y9)
12.(a) 0.3, 0.2, 0.8, 0.2, 0.8	B2	B1 0.3 with one other correct, or 0.2 & 0.8 as a pair
(b) 0.7×0.2	M1	Di v.s with one other correct, or v.2 & v.o as a pan
= 0.14	A1	FT from their tree, not 0.5s and must be <1
	4	,
13.(a) Method for either (i) or (ii)	M1	(Accept missing brackets if no other marks in (a))
(i) $3a + 2b$	A1	Simplifying $-(2\mathbf{a} + \mathbf{b}) + 5\mathbf{a} + 3\mathbf{b}$ correctly
(ii) 9a + 6b	A1	Simplifying $-(5\mathbf{a} + 3\mathbf{b}) + 14\mathbf{a} + 9\mathbf{b}$ correctly
(b) $KM = 12a + 8b$ seen or implied	M1	FT(i) + (ii)
Showing $p = 4$	A1	CAO
(c) Collinear (or parallel) and 4 times length,	E2	E1 for parallel OR collinear OR 4 times length
OR Collinear with ratio KL:LM as 1:3, OR equivalent	7	Accept 'all on straight line' for collinear
14.(a) $x = -3, 1, 5$	B1	All three required
(b) Tangent at $x = 4$	B1 M1	Independent of tengent drawn or not ma values required
Gradient = change <i>y</i> / change <i>x</i> 11 from a tangent or ft reasonable tangent	A1	Independent of tangent drawn or not, no values required
(c) Line $y = 10$ stated or shown	B1	Maybe implied
Solution \sim -2.6, \sim 0.4, \sim 5.3	B2	FT from incorrect line
	102	B1 for 2 solutions, or 3 solutions from consistent MR
(d) Using trapezium rule or evidence of summation of areas.	M1	Must be for required area
At least 2 correct non zero y values.	M1	Equal strips gives (-3,0),(-2,21),(-1,24),(0,15),(1,0)
Correct expression for total area.	A1	Allow 1 error in y value. 10.5+22.5+19.5+7.5
Answer 60	A1	CAO
	11	An answer of '260' gets M0, M1, A0, A0 but then SC1
15. (a) $(x=)$ 0.6525252 & $(100x=)$ 65.252525 with attempt	M1	Or equivalent
to find the difference	1,11	
646 / 990	A1	A final answer of 64.6/99 is M1 only
	B2	B1 for $325=5\times5\times13$ or $\sqrt{325}=5\sqrt{13}$ or partial simplification or
(b) $65\sqrt{5}$	D2	B1 for $325=3\times3\times13$ or $\sqrt{3}25=3\sqrt{13}$ or partial simplification or

PAPER 2 – HIGHER TIER

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/11/11
1.(a)(i) Their readings at 14:30 & 13:00 and intention to	M1	116 – 64. Allow for 'their readings' with intention to subtract
subtract		
= 52 (km)	A1	CAO
(ii) 52/1.5	M1	FT their (i)
34.666(km / h)	A1	Accept rounded or truncated. However, do not accept an answer of
		35 without working or from incorrect working
(1) F = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	F1	SC1 for an answer of 40
(b) Explanation, e.g. "first half journey in just over an hour",	E1	Accept, e.g. "more vertical", "line increases means it is quicker"
"steeper to start" 2.(a) -5, -2, 3	5 B2	B1 for any two terms in correct position. Award B1 for -6, -5, -2
2.(a) -3, -2, 5 (b) x(x - 5)	B2 B1	CAO
(c) $120(2y-3)$	B2	B1 for correct partially factorised, or 120(2y) or 120(3)
(c) 120(2y -3)	D2	B0 for $240(y - 1.5)$
(d) $12x - 44 = 40$ OR $3x-11 = 40/4$	В1	FT until 2 nd error in (d)
12x = 40+44 OR 3x = 10+11	B1	11 unit 2 viivi ii (u)
x = 84/12 (ISW) OR $x = 21/3$ (ISW) OR $x = 7$	B1	Accept embedded answer
(e) 9	B1	CAO
	9	
3.(a) 0.72	B2	B1 for 0.7(17694)
(b) $18/100 \times 45 (= 8.1(0))$	M1	
45 + their tax	m1	Alternatively allow M2 for 1.18 × 45
(£)53.1(0)	A1	CAO
(c) Any correct 8% of a value used in workings	B1	2
1600 – 8% of 1600 (= 1600 – 128)	M1	OR M2 for 1600×0.92^2 (M1 for 1600×0.92)
1472 – 8% of 1472 (= 1472 – 117.76)	m1	FT their 128
(£) 1354.24	A1	CAO. Penalise extra working -1
	9	Appreciate: Possible B1 and SC1 for (£)1866.24
4 700174	M1	Simple depreciate: Possible B1 and M1 (1344)
4. 700×1.64 = (\$)1148 (Canadian dollars)	A1	
Conclusion, has to buy 1100 (Canadian dollars)	A1	FT their rounding down to nearest 50 provided M1
1100 ÷1.64	M1	FT their amount of Canadian dollars but not 'their 1148', for M
= 670.73(17)	A1	and 1 st A only, however FT multiples of 50 for all marks
£670.73	A1	£ must be given. Accept £670.73p
2010.13		Accept an answer of '£29.27 in credit' or similar, but an answer of
		29.27 would not get the final A mark, but would do award the
	6	previous M1 A1 as alternative method
5.(a) Mid points 4, 12 and 20	B1	Two shown is sufficient if no error
$(15 \times 4 + 67 \times 12 + 18 \times 20) \qquad (OR 60 + 804 + 360 = 1224)$	M1	Attempt $\sum fx$ for their mid-points that fall within the intervals
		including bounds
100	ml	Attempt their fx divided by 100
= 12.2(4)	A1	CAO. Accept 12 only if all working shown
(b)Polygon with at least 3 vertices correctly plotted (vertical & horizontal)	M1	No polygon M0. Ignore bars. Mid points - allow intention (e.g. from 10 to 12 inclusion)
All 5 vertices of the polygon correct	A1	SC1 for a correct polygon translated horizontally or all correct
7 III 5 vertices of the polygon correct	6	plots with no polygon (or curved polygon!). Ignore joining to axis
		or to form a complete shape
6.(a) $2 \times \pi \times 7.2$	M1	rr.
= 45.2(16) to 45.3 (cm)	A1	
Degree of accuracy, whole or 1 d.p.	A1	FT rounding to whole or 1d.p. provided M1 A1 awarded
(b) $\frac{1}{2} \pi \times 22.4^2$	M2	Allow M1 $\pi \times 22.4^2$
$= 787.7(6)$ to $788.2(cm^2)$	A1	A1 FT 1575.5 to 1576.3
		SC1 for answer 3151 to 3152.65
(c) $\frac{1}{2}(8.2 + 12.8) \times 7.6$	M1	
79.8 (cm ²)	A1	Accept 80 from working
7 (a) 101. (a = 11. + 7	8 D1	Fund ET and done for a 1 1 1 1 C 1 CC 1
7. (a) $18k - 6q = dk + 7$	B1	Expand FT each stage for equivalent level of difficulty Collect until 2 nd error
18k - dk = 6q + 7 $k (18 - d) = 6q + 7$	B1 B1	Collect until 2 nd error Factorise
k (18-d) = 6q + 7 $k = (6q+7)/(18-d)$	B1	Divide
k - (6q + 7) (18-a) (b)(i) 7.6 $\times 10^7$	B1	CAO
(ii) 8×10^8	B1	CAO Penalise incorrect notation once only
()	6	

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/2	11/11
8. (a) One correct evaluation,	B1		
$3 \le x \le 4$		$x 2x^3 + x - 100$	
		3 -43	
2 correct evaluations,	B1	3.1 -37.318	
$3.55 \le x \le 3.7$, one either side of 0		3.2 -31.264	
`		3.3 -24.826	
2 correct evaluations,	M1	3.4 -17.992	
$3.55 \le x \le 3.65$, one either side of 0		3.5 -10.75	
OR correct evaluation of 3.65 if previous B1 awarded		3.55 -6.97225	
r		3.6 -3.088	
3.6	A1	3.65 0.90425	
No calculations shown: accept "too high", ">", etc.		3.7 5.006	
		3.8 13.544	
		3.9 22.538	
		4 32	
(b) Correctly setting up 2 equations for eliminating 1 variable	M1	Or alternate substitution method, allow one sl	lip in multiplication in
,		non-eliminate	
First variable's value	A1	Either $x = 2$ or $y = -6$	
Correctly substituting their first variable	M1	FT their first variable	
Second variable's value	A1	FT their first variable	
Socond variable 5 value	8	1 - Mon mot variable	
9.(a) $5.4/3 \times 2.5$	M1	Or equivalent calculation that could lead to co	orrect answer
= 4.5 (cm)	A1	or equivalent carculation that could lead to co	officet allower
- 4.3 (cm) (b) 3.6 / 5.4/3	M1	Or equivalent calculation that could lead to co	orrect angwer
	A1	If no marks in (a) or (b) then award	offect allswei
= 2 (cm)			
$10.(a) (AD^2 =) 12.3^2 - 6.2^2$	4 M1	SC1 for sight of scale factor 1.8	
$(AD^2 =) 112.85$	A1		
AD = 10.6(23 cm)	A1	0 :1 + 5 100 1 1/1 : 0	
(b) Strategy, idea to find BC and CD	S1	Or idea to find DC and use ½ cbsinD	
$\sin 41 = BC/12.3$ OR $\cos 41 = CD/12.3$	M1		
$BC = 12.3 \times \sin 41$ OR $CD = \cos 41 \times 12.3$	M1	Implies previous M1	
BC = 8.0695 OR $CD = 9.28$	A1		OR
Use of correct method to find the other side	M1	Correct Pythagoras substitution, or trig	M2 ½ absinD
Other side correct CD or BC	A1	Allow FT from rounding errors	correctly substituted
Area BCD = $\frac{1}{2}$ BC×CD	M1	FT their CD and BC provided at least S1	(M1 if 1 slip, not the
Answers between 37.4 and 37.7 (cm ²)	A1	FT	wrong angle)
	11		A2 Correct answer
11. (a) 30 (seconds)	B1		
(b) Histogram drawn with at least 4 frequency densities correct	M1	Frequency density 1, 1.6, 2.4, 4.2 and 0.4	
Correct histogram drawn	A1		
-	3		
$12.(a) y \alpha x^2 OR y = kx^2$	B1		
$4 = k0.5^2$	M1	FT non linear only	
$y = 16x^2$	A1	Maybe implied in part (b)	
(b)		, r r(v)	
x 0.5 3 20	B2	B1 for each value. FT their non linear expres	ssion
y 4 144 6400	5	The state of the s	·= - =
$13.(a) 2(x+5)(x+4) + 2(x+4) \times 6 + 2(x+5) \times 6$	M2	M1 for area of any 2 of the 6 faces, or 1 of the	a 3 terms
13.(a) $2(x+3)(x+4) + 2(x+4) \times 6 + 2(x+5) \times 6$ $2x^2 + 42x - 57 = 0$		Must follow from working, convincing	e 3 terms.
	A1		
(b) $\{-42 \pm \sqrt{(42^2 - 4 \times 2 \times -57)}\}/4$	M1	Allow 1 slip. Incorrect formula is M0	
$(-42 \pm \sqrt{2220})/4$	A1		
1.28 and -22.28	A1	FT 4 and 5 (A	ET C
(c) (6,) 5.28, 6.28	B1	FT $x + 4$ and $x + 5$. (Accept 5.3 and 6.3). Allowed FD if the and the given	ow F1 from +ve only.
14.(a) Mean 54.7	7 B1	B0 if +ve and –ve given	
14.(a) Mean 54./			
$\Sigma x^2 = 34257 \text{ or } \Sigma (x - x)^2 = 4336.1$	M1		
SD = 20.8(233)	A1	ET 2	
(b) New mean 56.7	B1	FT mean + 2	
SD = 20.8(233)	B1	FT 'their SD' unchanged	
Explanation e.g. 'spread unchanged'	E1	Depends on B2 in (b). Understanding, not cal	
	6	calculations accept simple statement 'all marl	ks went up'
	·	<u> </u>	

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/11/11
15.Overall strategy, cosine rule followed by sine rule	S1	
$AC^2 = 52^2 + 37^2 - 2 \times 52 \times 37 \times \cos 19$	M1	
$AC^2 = 434.644$	A1	
AC = 20.8(481)	A1	Accept 21.
$\underline{\sin}B = \underline{\sin}47$	M1	FT candidate's AC
AC 28		
$\sin B = \sin 47 \times AC/28$	M1	Implies previous M1
32.9(9°) to 33(.26°)	A1	
	7	

GCSE Mathematics - 2 Tier Legacy MS/November 2011

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk